您的位置 首页 知识

一元二次方程的求根公式推导过程(△的公式与求根公式)

一元二次方程求根公式详细的推导过程是什么?

一元二次方程求根公式推导过程:ax^2+bx+c=0(a≠0,^2表示平方),等式两边都除以a,得x^2+bx/a+c/a=0…开根后得x+b/2a=±[√(b^2-4ac)]/2a(√表示根号),最终可得x=[-b±√(b^2-4ac)]/2a。

一元二次方程的根公式是由配方法推导来的,那么由ax^2+bx+c(一元二次方程的基本形式)推导根公式的详细过程:

1、ax^2+bx+c=0(a≠0,^2表示平方),等式两边都除以a,得x^2+bx/a+c/a=0,

2、移项得x^2+bx/a=-c/a,方程两边都加上一次项系数b/a的一半的平方,即方程两边都加上b^2/4a^2,

3、配方得x^2+bx/a+b^2/4a^2=b^2/4a^2-c/a,即(x+b/2a)^2=(b^2-4ac)/4a,

4、开根后得x+b/2a=±[√(b^2-4ac)]/2a(√表示根号),最终可得x=[-b±√(b^2-4ac)]/2a。

△的公式与求根公式取值范围?

△(delta)是一个数学符号,通常用来表示二次方程的判别式。对于一元二次方程ax^2 + bx + c = 0,判别式△的公式为△ = b^2 – 4ac。

△的取值范围与方程的根有关:

1. 当△ > 0时,方程有两个不相等的实根。这意味着判别式大于零时,方程的解存在且为实数。

2. 当△ = 0时,方程有两个相等的实根。这意味着判别式等于零时,方程的解存在且为实数,但是两个根相等。

3. 当△ < 0时,方程没有实根,而是有两个共轭复根。这意味着判别式小于零时,方程的解为复数。

总结起来,判别式△的取值范围为:

1. 当△ > 0时,方程有两个不相等的实根。

2. 当△ = 0时,方程有两个相等的实根。

3. 当△ < 0时,方程没有实根,而是有两个共轭复根。

一元二次方程的求根公式解法

1、一元二次方程的求根公式,将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为x=(-b±√(b*b-4ac))/2a, 该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法。(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0);(2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的;(3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式。

2、一元二次方程的根的判别式

(1)当b2-4ac>0时,方程有两个不相等的实数根x=(-b±√(b*b-4ac))/2a;(2)当b2-4ac=0时,方程有两个相等的实数根x1=x2=-b/2a;(3)当b2-4ac<0时,方程没有实数根。

这个一元二次方程代入求根公式里怎么计算?

  • 这个一元二次方程代入求根公式里怎么计算?
  • x=[_(_2)±√(4+12+4y)]2=1±√(4+y),把y看作已知数

一元二次方程求根公式

  • aX^2+bX+c=0X=(-b±√(b^2-4ac))(2a)

一元二次方程求根公式是什么就是有根号的那个

  • 当△0,有两个实数根△=0,一个根△0,无实数根

一元二次方程的求根公式中的a可不可以为负数

  • 可以,一般教科书上是把a转化成正值,负值没事,不影响结果