sin全部公式?
1.sin (α+k?360)=sin α
cos (α+k?360)=cos a
tan (α+k?360)=tan α
2.sin(180°+β)=-sinα
cos(180°+β)=-cosa
3.sin(-α)=-sina
cos(-a)=cosα
4*.tan(180°+α)=tanα
tan(-α)=tanα
5.sin(180°-α)=sinα
cos(180°-α)=-cosα
6.sin(360°-α)=-sinα
cos(360°-α)=cosα
7.sin(π/2-α)=cosα
cos(π/2-α)=sinα
8*.Sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
9*.Sin(π/2+α)=cosα
cos(π/2+a)=-sinα
10*.sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
二、两角和与差的三角函数
1.两点距离公式
2.S(α+β):sin(α+β)=sinαcosβ+cosαsinβ
C(α+β):cos(α+β)=cosαcosβ-sinαsinβ
3.S(α-β):sin(α-β)=sinαcosβ-cosαsinβ
C(α-β):cos(α-β)=cosαcosβ+sinαsinβ
4.T(α+β):
T(α-β):
5*.
三、二倍角公式
1.S2α:sin2α=2sinαcosα
2.C2a:cos2α=cos?2α-sin2a
3.T2α:tan2α=(2tanα)/(1-tan2α)
4.C2a’:cos2α=1-2sin2α
cos2α=2cos2α-1
四*、其它杂项(全部不可直接用)
1.辅助角公式
asinα+bcosα= sin(a+φ),其中tanφ=b/a,其终边过点(a,b)
asinα+bcosα= cos(a-φ),其中tanφ=a/b,其终边过点(b,a)
2.降次、配方公式
降次:
sin2θ=(1-cos2θ)/2
cos2θ=(1+cos2θ)/2
配方
1±sinθ=[sin(θ/2)±cos(θ/2)]2
1+cosθ=2cos2(θ/2)
1-cosθ=2sin2(θ/2)
3.三倍角公式
sin3θ=3sinθ-4sin3θ
cos3θ=4cos3-3cosθ
4.万能公式
5.和差化积公式
sinα+sinβ= 书p45 例5(2)
sinα-sinβ=
cosα+cosβ=
cosα-cosβ=
6.积化和差公式
sinαsinβ=1/2[sin(α+β)+sin(α-β)] 书p45 例5(1)
cosαsinβ=1/2[sin(α+β)-sin(α-β)]
sinαsinβ-1/2[cos(α+β)-cos(α-β)]
cosαcosβ=1/2[cos(α+β)+cos(α-β)]
求高中三角函数所有公式归纳?
高中三角函数公式
倍角公式
Sin2A=2SinA·CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=(2tanA)/(1-tanA^2)
(注:SinA^2 是sinA的平方 sin2(A) )
半角公式
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
降幂公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=vercos(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
辅助角公式
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
三角函数常用公式
正弦函数 sinθ=y/r
余弦函数 cosθ=x/r
正切函数 tanθ=y/x
余切函数 cotθ=x/y
正割函数 secθ=r/x
余割函数 cscθ=r/y
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a=tana·tan(π/3+a)·tan(π/3-a)
三角和
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
两角和差
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
和差化积
sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]
sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]
cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]
cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
口诀:正加正,正在前,余加余,余并肩,正减正,余在前,余减余,负正弦。
积化和差
sinαsinβ=[cos(α-β)-cos(α+β)]/2
cosαcosβ=[cos(α+β)+cos(α-β)]/2
sinαcosβ=[sin(α+β)+sin(α-β)]/2
cosαsinβ=[sin(α+β)-sin(α-β)]/2
同角三角函数关系
倒数关系:tanα·cotα=1 sinα·cscα=1 cosα·secα=1
商的关系:sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα
平方关系:sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)
诱导公式
sin(-α)=-sinα
cos(-α)=cosα
tan(—a)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
sin(π-α)=sinα
cos(π-α)=-cosα
sin(π+α)=-sinα
cos(π+α)=-cosα
tanA=sinA/cosA
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
tan(π-α)=-tanα
tan(π+α)=tanα
sin三角函数公式是几年级的
sin三角函数公式是九年级的。三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
Sin105度 利用和差角公式求这三角函数
- sin105°=sin(45°+60°)=sin45°cos60°+sin60°cos45°=√22*12+√32*√22=(√2+√6)4。cosπ12=cos15°=cos(45°-30°)=cos45°cos30°+sin45°sin30°=√22*√32+√22*12=(√6+√2)4,tan(-7π12)=tan(-105°)=-tan(45°+60°)=-(tan45°+tan60)[1-tan45°tan60°]=-(1+√3)(1-√3)=-(1+√3)^敞骇搬较植记邦席鲍芦22=-2-√3。
Sin105度 利用和差角公式求这三角函数
- sin105°=sin(45°+60°)=sin45°cos60°+sin60°cos45°=√22*12+√32*√22=(√2+√6)4。cosπ12=cos15°=cos(45°-30°)=cos45°cos30°+sin45°sin30°=√22*√32+√22*12=(√6+√2)4,tan(-7π12)=tan(-105°)=-tan(45°+60°)=-(tan45°+tan60)[1-tan45°tan60°]=-(1+√3)(1-√3)=-(1+√3)^敞骇搬较植记邦席鲍芦22=-2-√3。
三角函数的诱导公式sin(α+π)=-sinα,这个α一定要是锐角吗?不是锐角可以用诱导公式吗?
- sin(α+π)=-sinαα是什么角都行, 不是锐角也可以用
Sin(一13O0度)和C0S(负六分之七十九兀)用公式求以上两个三角函数值
- 高一数学问题
- 和C0S(负六分之七十九兀)